Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
2.
Microbiol Spectr ; 9(2): e0025021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1434908

ABSTRACT

During the last year, mass screening campaigns have been carried out to identify immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and establish a possible seroprevalence. The obtained results gained new importance with the beginning of the SARS-CoV-2 vaccination campaign, as the lack of doses has persuaded several countries to introduce different policies for individuals who had a history of COVID-19. Lateral flow assays (LFAs) may represent an affordable tool to support population screening in low-middle-income countries, where diagnostic tests are lacking and epidemiology is still widely unknown. However, LFAs have demonstrated a wide range of performance, and the question of which one could be more valuable in these settings still remains. We evaluated the performance of 11 LFAs in detecting SARS-CoV-2 infection, analyzing samples collected from 350 subjects. In addition, samples from 57 health care workers collected at 21 to 24 days after the first dose of the Pfizer-BioNTech vaccine were also evaluated. LFAs demonstrated a wide range of specificity (92.31% to 100%) and sensitivity (50% to 100%). The analysis of postvaccination samples was used to describe the most suitable tests to detect IgG response against S protein receptor binding domain (RBD). Tuberculosis (TB) therapy was identified as a potential factor affecting the specificity of LFAs. This analysis identified which LFAs represent a valuable tool not only for the detection of prior SARS-CoV-2 infection but also for the detection of IgG elicited in response to vaccination. These results demonstrated that different LFAs may have different applications and the possible risks of their use in high-TB-burden settings. IMPORTANCE Our study provides a fresh perspective on the possible employment of SARS-CoV-2 LFA antibody tests. We developed an in-depth, large-scale analysis comparing LFA performance to enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence immunoassay (ECLIA) and evaluating their sensitivity and specificity in identifying COVID-19 patients at different time points from symptom onset. Moreover, for the first time, we analyzed samples of patients undergoing treatment for endemic poverty-related diseases, especially tuberculosis, and we evaluated the impact of this therapy on test specificity in order to assess possible performance in TB high-burden countries.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , BNT162 Vaccine , COVID-19/diagnosis , Electrochemical Techniques , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Mass Screening/methods , Point-of-Care Testing , Sensitivity and Specificity , Tuberculosis/diagnosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL